Heart failure is the leading cause of death in the world. In the United States alone, hundreds of thousands of people succumb to the disease every year, while the costs of care and lost productivity drain more than $200 billion from the economy.
Recent breakthroughs in stem cell research offer hope for new treatments that could help patients regrow muscle tissue after heart attacks, a key to achieving more complete recovery.
However, challenges remain.
Disruption to blood flow during a heart attack leads to significant loss of heart muscle and, subsequently, heart functioning. For that reason, restoring adequate blood flow, or perfusion, is critical. And, heart muscle grown from stem cells has to survive and integrate properly with host tissue.
One UW Medicine team, working at the intersection of tissue engineering, stem cell biology, and optical imaging, has taken these challenges on – and is making exciting progress.
The results of a recent investigation demonstrating the effectiveness of in vitro vascularization, (the formation of blood vessels) for infarcted rat heart are detailed in a new article (Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts), co-authored by Dr. Ying Zheng a