The Role of Mitochondria in the Pathogenesis of Kawasaki Disease

Kawasaki disease is a systemic vasculitis, especially of the coronary arteries, affecting children. Despite extensive research, much is still unknown about the principal driver behind the amplified inflammatory response. We propose mitochondria may play a critical role. Mitochondria serve as a central hub, influencing energy generation, cell proliferation, and bioenergetics. Regulation of these biological processes, however, comes at a price.…
Read More
Therapeutics that inhibit IL-6 at different points in its signaling pathway are in clinical use yet whether the immunologic effects of these interventions differ based on their molecular target is unknown. We performed short-term interventions in individuals with type 1 diabetes using anti-IL-6 (siltuximab) or anti-IL-6 receptor (IL-6R; tocilizumab) and investigated the impact of this in vivo blockade on T…
Read More

Dynamics of Phagocytosis Mediated by Phosphatidylserine

Phagocytosis triggered by the phospholipid phosphatidylserine (PS) is key for the removal of apoptotic cells in development, tissue homeostasis and infection. Modulation of PS-mediated phagocytosis is an attractive target for therapeutic intervention in the context of atherosclerosis, neurodegenerative disease, and cancer. Whereas the mechanisms of target recognition, lipid and protein signalling, and cytoskeletal remodelling in opsonin-driven modes of phagocytosis are…
Read More
Transcription of E-cadherin, a tumor suppressor that plays critical roles in cell adhesion and the epithelial-mesenchymal transition, is regulated by a promoter-associated non-coding RNA (paRNA). The sense-oriented paRNA (S-paRNA) includes a functional C/A single nucleotide polymorphism (SNP rs16260). The A-allele leads to decreased transcriptional activity and increased prostate cancer risk. The polymorphic site is known to affect binding of a…
Read More

Identification of Nonhuman Primate Hematopoietic Stem and Progenitor Cells

The preclinical development of hematopoietic stem cell (HSC) gene therapy/editing and transplantation protocols is frequently performed in large animal models such as nonhuman primates (NHPs). Similarity in physiology, size, and life expectation as well as cross-reactivity of most reagents and medications allows for the development of treatment strategies with rapid translation to clinical applications. Especially after the adverse events of…
Read More
Residual viable tumor cells after ablation at the tumor periphery serve as the source for tumor recurrence, leading to treatment failure. To develop a novel three-dimensional (3D) multi-modal perfusion-thermal electrode system completely eradicating medium-to-large malignancies. This study included five steps: (i) design of the new system; (ii) production of the new system; (iii) ex vivo evaluation of its perfusion-thermal functions;…
Read More
Cell fusion of female and male gametes is the climax of sexual reproduction. In many organisms, the Hapless 2 (HAP2) family of proteins play a critical role in gamete fusion. We find that Plasmodium falciparum, the causative agent of human malaria, expresses two HAP2 proteins: PfHAP2 and PfHAP2p. These proteins are present in stage V gametocytes and localize throughout the…
Read More
The L-type calcium currents conducted by the cardiac CaV1.2 calcium channel initiate excitation-contraction coupling and serve as a key regulator of heart rate, rhythm, and force of contraction. CaV1.2 is regulated by β-adrenergic/protein kinase A (PKA)-mediated protein phosphorylation, proteolytic processing, and autoinhibition by its carboxyl-terminal domain (CT). The small guanosine triphosphatase (GTPase) RAD (Ras associated with diabetes) has emerged as…
Read More
Resolving the spatial distribution of RNA and protein in tissues at subcellular resolution is a challenge in the field of spatial biology. We describe spatial molecular imaging, a system that measures RNAs and proteins in intact biological samples at subcellular resolution by performing multiple cycles of nucleic acid hybridization of fluorescent molecular barcodes. We demonstrate that spatial molecular imaging has…
Read More
Centromeric histones (CenH3s) are essential for chromosome inheritance during cell division in most eukaryotes. CenH3 genes have rapidly evolved and undergone repeated gene duplications and diversification in many plant and animal species. In Caenorhabditis species, two independent duplications of CenH3 (named hcp-3 for HoloCentric chromosome-binding Protein 3) were previously identified in C. elegans and C. remanei. Using phylogenomic analyses in…
Read More